
1

Communications for Integrated Modular Avionics

Richard L. Alena
Richard.L.Alena@nasa.gov
John P. Ossenfort IV, SAIC

Kenneth I. Laws, QSS
Andre Goforth

NASA Ames Research Center
Moffett Field, CA 94035

Fernando Figueroa, NASA Stennis Space Center

Abstract—The aerospace industry has been adopting
avionics architectures to take advantage of advances in
computer engineering. Integrated Modular Avionics (IMA),
as described in ARINC 653, distributes functional modules
into a robust configuration interconnected with a “virtual
backplane” data communications network. Each avionics
module’s function is defined in software compliant with the
APEX Application Program Interface. The Avionics Full-
Duplex Ethernet (AFDX) network replaces the point-to-
point connections used in previous distributed systems with
“virtual links”. This network creates a command and data
path between avionics modules with the software and
network defining the active virtual links over an integrated
physical network. In the event of failures, the software and
network can perform complex reconfigurations very
quickly, resulting in a very robust system.

In this paper, suitable architectures, standards and
conceptual designs for IMA computational modules and the
virtual backplane are defined and analyzed for applicability
to spacecraft. The AFDX network standard is examined in
detail and compared with IEEE 802.3 Ethernet. A reference
design for the “Ancillary Sensor Network” (ASN) is
outlined based on the IEEE 1451 “Standard for a Smart
Transducer Interface for Sensors and Actuators” using real-
time operating systems, time deterministic AFDX and
wireless LAN technology. Strategies for flight test and
operational data collection related to Systems Health
Management are developed, facilitating vehicle ground
processing. Finally, a laboratory evaluation defines
performance metrics and test protocols and summarizes the
results of AFDX network tests, allowing identification of
design issues and determination of ASN subsystem
scalability, from a few to potentially thousands of smart and
legacy sensors.12

1 U.S. Government work not protected by U.S. copyright.
2 IEEEAC Paper #1230, Version 1.3, Updated December 27, 2006

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. INTEGRATED MODULAR AVIONICS...................... 2
3. NETWORKS FOR AEROSPACE 4
4. MISSION COMPUTER DESIGN............................... 8
5. LAB EVALUATION... 12
6. CONCLUSIONS... 16
REFERENCES... 17
BIOGRAPHY .. 18

1. INTRODUCTION

Recent advances in software architecture and data
communications can benefit modern aerospace avionics
systems by increasing capability and improving reliability.
In particular, network-oriented standards offer high
bandwidth and flexible support for modern devices and data
types. Specifically, advances in computational capability,
software interfaces and time deterministic networks can
improve system architecture and facilitate software
development for modern aerospace avionics systems. The
ARINC 653 “Avionics Application Software Standard
Interface” operating system specification incorporates
partitions for separating critical and non-critical functions.
Its Integrated Modular Avionics (IMA) concept relies on
functional isolation between operating system partitions to
limit propagating failure modes within avionics software;
and to simplify software validation and verification (V&V).
IMA replaces point-to-point cabling with a “virtual
backplane” data communications network. The network
connects software-configurable computing modules that can
adapt to changes in operating modes or respond to an
avionics system fault. There is a potential path between any
of these modules, with the software and network defining
the active Virtual Links to support effective partitioning. In
the event of failures, the system can quickly reconfigure its
software functions (in pre-determined ways), resulting in a
very robust system.

2

IMA requires robust yet flexible data communications. This
paper focuses on the Airbus Avionics Full-Duplex Ethernet
(AFDX) and ARINC 664 Aircraft Data Network Part 7
time-deterministic network Standards in order to determine
completeness of the Standards, maturity of commercial
products, acceptance and adoption by the aerospace
industry, and appropriate role on-board spacecraft. AFDX
uses the physical layer widely used in the computer industry
as specified in the IEEE 802.3 Switched Ethernet Standard.
This is a “star” topology, with the switch forming the center,
routing data only to specified destinations and thereby
minimizing network contention. The AFDX switch enforces
timing and policies, limiting fault propagation and ensuring
time determinism.

Dual-redundant AFDX networks are used for reliability.
The physical medium is generally shielded twisted pair
copper cables, although optical fiber can also be used.
Bandwidth is 10 Mbits per second (Mbps), 100 Mbps, and
even 1000 Mbps. AFDX creates Virtual Links (VLs), which
are point-to-multipoint time-division multiplexed
connections. Also, time-synchronous delivery of critical
data streams can be guaranteed, with a timing jitter of at
most 0.5 msec for any VL. AFDX uses the concept of
Bandwidth Allocation Gap (BAG) to distribute the data
stream into timed packets, with the BAG value determining
the time interval between packets on a given VL.

Primary benefits of AFDX are a reduction of cable weight
and volume, an increase in bandwidth and data volume, and
greater flexibility in software design and V&V. AFDX
complements ARINC 653 software architectures, serving as
the virtual backplane. AFDX provides compatibility with
network-oriented data communication formats. AFDX can
support additional sensors for flight test and monitoring
capability upgrades. The Ancillary Sensor Network is
proposed for such use, to support up to 10,000 sensors at
high data rates and resolutions, supporting smart sensors
compliant with the IEEE 1451 Standard, simplifying
calibration and maintenance.

The Ancillary Sensor Network (ASN) was prototyped using
up to four end stations. A total of 120 VLs were used to
move large amounts of data in a time-deterministic manner
suitable for sensor-data acquisition. Packet-to-packet
“bandwidth allocation gap” (BAG) timing was measured for
every packet generated by the traffic generator according to
recipes that simulated various target functions. Average
packet-to-packet timing for each VL was determined, along
with standard deviation and minimum and maximum
packet-to-packet timing intervals. These were compared to
the AFDX jitter specification of 0.5 msec maximum. Lost,
missing, or delayed packets were detected and reported.

AFDX is a key technology for installing time-deterministic
networks aboard aerospace vehicles. A survey of aerospace
use showed that Airbus and Boeing are both adopting
AFDX and ARINC 653 for flight-critical roles aboard the

next generation of commercial aircraft. Although space-
qualified parts are not currently available, use of AFDX in
certain roles aboard spacecraft can simplify cabling, leading
to a significant reduction in cable weight and volume. Other
significant advantages include simplified software design
and network management, ease of reconfiguration and
extension, and compliance with industry network standards.

The team from Ames Research Center has significant
experience in spacecraft data systems and communications,
providing key analysis for the Space Station Freedom
Command and Data Handling System. In 1995, the Wireless
Network Experiment aboard Shuttle and Mir led to the
adoption of wireless network technology for the
International Space Station (ISS). Subsequently, the team
developed the Databus Analysis Tool, a MIL-STD 1553B
data-bus monitor space-qualified during STS 85 and used
for ISS Control Momentum Gyro checkout during STS 92.

2. INTEGRATED MODULAR AVIONICS

The aerospace industry has been moving from “distributed”
and “federated” avionics architectures to “modular”
architectures, and is adopting other advances in computer
engineering such as networks and Internet Protocol (IP).
These advances promise to increase the performance and
reliability of avionics systems while simplifying the
development and certification of flight software and
avionics hardware.

The International Space Station (ISS) exemplifies a
distributed architecture. The ISS avionics system is built
with a large number of relatively small Orbital Replaceable
Units (ORUs)—identical in concept to aircraft Line-
Replaceable Units (LRUs)—interconnected with multiple
MIL-STD 1553B data buses.[1] The units typically have
very specific functions that do not change over time
(although a unit’s operating mode within a redundant
configuration may change). An example of federated
architecture is the Boeing 767 aircraft, which has dedicated
LRUs responsible for specific functions such as engine
control interconnected by ARINC 429 data buses.

Such architectures have several drawbacks. The multiplicity
of specific modules requires a large and complex
development effort, plus the maintenance of a similar
multiplicity of spare parts. Each component on a
synchronous data bus must interoperate with all the other
components, so software changes in one may require
corresponding changes in the others. Experience has shown
such systems to be slow as well as difficult to develop and
to upgrade. On the plus side, the architecture can be fairly
robust. Each module can be designed to function
independently despite failures at other points in the system.

The Boeing 777 Aircraft Information Management System
(AIMS) exemplifies integrated avionics, with design
starting in the mid 1990s. Most of the computation takes

3

place in large cabinets of processors. Data communication is
via point-to-point data buses such as ARINC 429 or
ARINC 629, augmented by fiber optic cables for display
and maintenance interfaces.[2] LRUs and data
communication cables are duplicated for reliability. The
processing boards have dedicated functions (again in
redundant configurations), but may aggregate functions
formerly distributed among several LRUs in the older
designs. This saves weight and power, and may simplify
software development and integration. However, this
architecture requires long cable runs for interconnecting
distant LRUs that increase weight and may introduce
reliability issues.

Integrated Modular Avionics (IMA) replaces the point-to-
point cabling with a “virtual backplane” data
communications network.[3] The network connects
software-configurable LRUs that can adapt to changes in
network functioning or operating modes. There is a potential
path between any of the LRUs, with the software and
network defining the active Virtual Links in real-time. In the
event of failures, the system can quickly reconfigure,
resulting in a very robust system. The ARINC 653 Standard
“Avionics Application Software Standard Interface”
describes an application program interface and operating
system for producing a flight-critical avionics system that
partitions critical and non-critical functions so that they
cannot interfere with each other.[4] Not only does this
simplify software design and implementation, it allows
more flexibility in software V&V. It is the result of years of
need by airframe manufacturers and their suppliers to have a
practical way to build avionics systems that may be certified
for human-rated or safety-critical applications within a
reasonable cost, and to allow upgrades to their equipment so
as to stay competitive and profitable. The first part of the
standard refers to a specific Application Program Interface
(API) called APEX, implemented in real-time operating
systems (RTOSs) used for avionics control systems. The
second part extends the APEX API by specifying the file
system, port data structures, and scheduler, while the third
part deals with APEX test compliance. XML configuration
files are used to define the system hardware and software
configuration.

One of the benefits of this ARINC 653 Standard is that once
flight certification is achieved, it is possible to add software
such as health monitoring or mission support functions
within new ARINC 653 partitions that may not be certified
to the same level as flight critical functions. This provides
an improved level of flexibility and ease of V&V to
avionics software development. Currently, certain software
changes in a platform running flight or safety-critical
software can produce unintended fault modes due to
ineffective isolation between software components. Proper
adherence to ARINC 653 architecture and design guidelines
helps guarantee this isolation, thereby allowing certification
by component. Certain effects, such as software execution
timing changes, can still propagate faults into isolated
partitions, but methods such as communication-link

partitioning can help limit these effects. This software
standard and its associated certification processes allows
each component to be certified to the level of criticality
associated with that component, producing major cost and
schedule savings.

ARINC 653 supports Avionics Full Duplex Ethernet
(AFDX) by means of Queuing and Sampling (Q&S) Ports.
The APEX API defines the calls to such ports, and the use
of an AFDX data communications system nicely
complements the logical constructs for Q&S ports. The
concept of a Queuing Port is similar to a First In-First Out
(FIFO) buffer, with transmit and receive timing similar to
TCP/IP streams. With AFDX providing bounded-time
latency, the delay in stream reception is also bounded.
However, the FIFO buffer, whose size is set as a parameter
in the AFDX configuration, will produce some variable
delay as it is filled or emptied at different rates. See Figure 1
for a graphical description of Q&S ports. A sampling port,
by contrast, overwrites the previous value in a single packet
buffer and updates a “freshness” parameter with a
timestamp indicating when the data was written. This buffer
can then be read by the receiving application either once or
multiple times. This mode is very useful for reading sensor
data where the exact time of the sensor value is of critical
importance. Most ports used in ARINC 653 flight
implementations are sampling ports.

Figure 1. Queuing and Sampling Ports

4

3. NETWORKS FOR AEROSPACE

Flight-critical avionics systems maintain flight-control loops
by reading critical sensors such as inertial measurement
units, computing current deviations from desired trajectory,
and outputting needed corrections to flight-control surfaces
and thrust-vector actuators. This must be done at a certain
consistent rate to maintain full control of the flight vehicle.
Missing corrections or erroneous corrections to control
elements can result in loss of flight control, and in
catastrophic hazards such as vehicle airframe overstress and
breakup. Typical ascent-vehicle flight-control loops run at
the 10 msec rate. Support functions can run at lower rates,
resulting in a collection of “rate groups” usually at time
frames of 10 msec, 100 msec and 1000 msec. Therefore, a
primary measure of data-communication utility for flight
control is the ability to maintain rate-monotonic scheduling
for all messages. Alternative figures of merit are total
message bandwidth, message error rates, and fault
containment for propagating fault modes.

Two communication standards—ARINC 429 and MIL-
STD 1553B—have dominated commercial and military
aviation. ARINC 429 connects LRUs aboard the
Boeing 737 and other civilian aircraft using distributed
avionics architectures. The MIL-STD 1553B is used in most
military aircraft for flight-critical control and control of
various mission systems. Both are half-duplex
communication standards. ARINC 429 connects LRUs via a
point-to-point cabling scheme; MIL-STD 1553B connects
multiple devices via a common bus. Both are currently used
in production aircraft and spacecraft, but deficiencies in
performance for modern aircraft has led to adoption of
extended and modified versions of these standards.

Data communications standards usually address specific
layers of communication, as formalized in the Open
Systems Interconnection Basic Reference Model. We will
use a simplified version of this seven-layer stack, reducing it
to four layers. At the bottom is the physical layer (PHY),
which is how the data is represented in physical reality: as
electrical signals or optical impulses, the type of modulation
and interconnection, and any other characteristics specific to
signaling such as data rate, clocking scheme, etc.

Next is the Media Access Control (MAC) layer—also called
the data link layer—specifying the logical mechanisms for
transmitter and receiver control, access to the medium
(using either time-division, frequency-division, or code-
division multiplexing), byte and word interpretation, and
any error-checking or correction functions.

The next higher layer is the protocol (PROT) layer, which
specifies the logical construct of “messages,” message
sequencing, and acknowledgement. The fourth layer is the
Application Layer, where specific software functions
running on the computational platforms can define their
own methods for assuring data integrity and managing
communication assets and redundancy.

Ethernet 802.3 MAC allows each transceiver on the network
to initiate message transfer on its own. This is the key
characteristic separating networks from data buses:
networks generally provide peer-to-peer asynchronous
access rather than master-initiated access and message
transfer. Ethernet is an asynchronous MAC with each
transceiver truly independent and the network using Carrier
Sense Multiple-Access/Collision Detect (CSMA/CD) for
arbitrating access. Therefore, in cases of high network load
(with many transceivers trying to send messages at the same
time), the probability of collision is high and the latency for
a given message to be transferred can be unbounded. That
is, it may take a long time for a given transceiver to be able
to access the physical layer to send its message, due to
constant interference or collisions with messages being sent
by other transceivers. This unbounded message latency
makes Ethernet unusable for time-critical control loops.
Such a network is termed an 802.3-compliant network.

As the Ethernet standard evolved, it moved from a common
bus-type cable fabric (Thick and Thin Ethernet) to a star
topology with a hub in the center. Each transceiver was
connected to an independent hub port and now all collisions
and interference could be mediated in the hub. However,
this simply moved the cause of the media contention from
the cable to the hub and did not solve the unbounded
message-latency problem.

The emergence of the switching hub—which buffered and
directed each message to the correct port based on its MAC
address—resulted in significant reduction of media
contention and much better network performance. A lightly
loaded switched Ethernet does in fact produce predictable
latency, provided that each transceiver exercises restraint in
its use of the network media. This results in a profiled
network.

This concept of limiting each transceiver’s media access is
the central one behind time-deterministic Ethernet. AFDX
times packet and message initiation for traffic shaping,
limiting when and at what rate any transceiver transmits on
the AFDX network. This produces bounded latency for
message delivery, and produces a time-deterministic
network. [5] AFDX is really a standardized method for
creating a good profiled network.

5

ARINC 664 – Ethernet and AFDX

Ethernet emerged as the first high-performance local area
network (LAN) standard for microcomputers in the 1980s.
It was developed by DEC, Intel, and Xerox, replacing point-
to-point serial links and telephone modems. The IEEE 802
family of standards describes the Ethernet PHY and MAC
layers and their relationship to Internet Protocol (IP). IEEE
802.1 describes overall architecture, bridging, and network-
management functions. IEEE 802.2 describes logical link
control for Ethernet, while 802.3 through 802.17 define
variations of PHY and MAC-layer technology such as
switched Ethernet and wireless Ethernet.

IEEE 802.3, “Carrier Sense Multi Access/Collision Detect
(CSMA/CD) Access Method and Physical Layer
Specification,” is the most relevant standard, being the
primary one for switched Ethernet and AFDX.[6] The
original 802 specifications defined shared-medium, peer-to-
peer data packet communication methods for multiple end
stations, with broadcast modes for network management. It
allowed LAN subnets to be bridged together into much
larger networks, including large hierarchical networks.

The Ethernet PHY layer is a differential 10-volt,
Manchester-encoded, self-clocking signal carried over a
transmission line. Coaxial cable or shielded twisted pairs are
commonly used for cable segments of up to 1 Km in length.
Conventional 802.3 Ethernet uses the CSMA/CD access
method: an end station listens for network traffic and
transmits when the network is clear, but then backs off and
retransmits in the event of a collision (when two end
stations transmit simultaneously).

An Ethernet 802.3 frame is a data structure for containing a
variable-length data field within a packet. Up to 1518 bytes
can be contained in one frame (with contents defined at the
MAC layer). The MAC layer also delimits the frame,
addresses the packets (48 bit), transfers data and detects
errors, performing Logical Link Control (LLC). Basic error
rates specified in the standards are important, being 8 X 10-8
per byte for wired end stations, with undetected errors
specified at a 5 X10-14 rate per byte of data.

The use of a star topology and a central switch—which
detects the destination address and sends the packet to only
that port—can significantly decrease the chances for data
collision, resulting in best performance with minimal packet
latency. Note however, that IEEE 802.3 is not time-
deterministic. Under certain circumstances, such as high
network load, successful packet transmission cannot be
guaranteed within a given time period (packet latency). A
packet can be delayed indefinitely by repeated collisions
within the network. In fact, there is an uncovered failure
mode affecting the entire network: when an end station
starts jabbering uncontrollably and therefore saturates the
network, preventing other needed data from being
transferred. For this reason, Ethernet has not been
considered for real-time, safety-critical use.

However, the widespread use of Ethernet, its performance,
and its peer-to-peer structure are attractive for use in the
aerospace industry. There have been several attempts to
define Ethernet for use aboard vehicles, such as the ARINC
664 Standard, “Aircraft Data Network,” which is comprised
of eight parts.[7] This standard was developed to enable
multiple networks optimized for different purposes to co-
exist aboard a vehicle, interface well with Airline
Operational Networks, be compliant with a large range of
commercial standards and implementations, and standardize
Conformance testing at the system and subsystem level.

Part 1 of the standard is “Systems Concepts and Overview,”
followed by Ethernet and Internet Protocol specifications in
Parts 2 to 6. This ARINC standard is an implementation of
the IEEE 802 Standards adapted for aircraft, containing
much of the same material but in greater detail and specific
to aircraft technology. ARINC 664 Part 7, “Avionics Full-
Duplex Ethernet (AFDX) Network,” specifies a certain
time-deterministic method applicable to real-time, safety-
critical command and control.[8]

Airbus commissioned the study and development of
network-based data communication standards for
commercial aviation, resulting in the Airbus Standard for
AFDX. [9] Subsequently, ARINC developed the 664 Part 7
standard around similar concepts for Boeing and other US
companies. There are minor differences between the two.
IEEE 802.3 interface methods allow the use of standard
Ethernet hardware for development by implementing a
compliant PHY layer. However, AFDX modifies the MAC
layer extensively, resulting in AFDX frames that look
similar to Ethernet frames but with certain fields containing
different parameters. See Figure 2 for a definition of an
AFDX frame.

6

Figure 2. AFDX Frame Definition

AFDX places certain requirements on the 802.3 PHY
interface: the interface must transmit even with the cable
disconnected, and must support the full 100-Mbps rate in
full-duplex mode. This is to prevent transient cable
disconnects from backing data up through the network, and
to support the full data rate. Ethernet can be used without a
protocol in a raw-packet transfer mode, but data-transfer
reliability requires a protocol and AFDX specifies the use of
either Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) in all cases.

Key properties of an AFDX network are Virtual Links (VL),
Bandwidth Allocation Gap (BAG), Maximum Frame Size
(LMax), Sequence Number (SN), data Integrity
Management (IM), and Redundancy Management (RM).
The Virtual Link (VL) provides a logical-addressing
structure within the network, simulating a virtual set of
ARINC 429 point-to-multipoint data links. That is, each
source and multiple receivers create a permanently defined
virtual circuit with guaranteed delivery of data, even though
the physical and logical transport is over a star-topology,
peer-to-peer network fabric.

The VL concept is central to AFDX in that each VL has a
specific timing and bandwidth allocation on the network.
That is, timing and traffic shaping is done on a per-VL
basis. The VL is specified in both the MAC address of the
end station and in the specific IP addressing at the protocol
level. One of the first major differences a user observes on
an AFDX network—as compared to an Ethernet network—
is that a given end station has multiple MAC addresses
(each corresponding to a different VL on the interface) as
well as multiple IP addresses (also designating different VL
numbers) on the same end-station port. In contrast, most
Ethernet ports have fixed MAC and IP addresses for each
interface port.

The AFDX traffic-shaping function regulates the timing of
packet generation on the network for each VL and also the
portion of total network bandwidth used by the given VL.
The key mechanism is the Bandwidth Allocation Gap
(BAG), which is the specified time interval between
successive packets (or frames) for a given VL. That is,
instead of simply transmitting successive packets at the
maximum rate possible (like Ethernet), an AFDX end

station will regulate its transmission of packets to one for
each specified BAG interval, thereby providing traffic at a
constant and deterministic rate. Aggregations of carefully
timed and bandwidth-limited transmitting end stations
should ensure that the entire AFDX produces and preserves
time-determinism.

The allowed AFDX BAG values are 1, 2, 4, 8, 16, 32, 64,
and 128 milliseconds (msec). In order to properly allocate
bandwidth, the different BAGs are given maximum data-
payload sizes that are proportional to the BAG rates. That is,
the 1 msec BAG is typically allowed only 64 bytes per
frame of data, while the 128 msec group is allowed the
maximum 1518 bytes per frame. A network traffic timeline
for several VLs with differing BAGs is shown in Figure 3.

Figure 3. Virtual-Link Bandwidth Allocation Gap

By definition, a given VL is sourced by only one
transmitting end station but can have multiple receivers.
This makes the virtual topology of AFDX closely resemble
ARINC 429 and MIL-STD 1553B physical topologies. In
fact, there is a formal mapping of ARINC 429 to AFDX and
a similar mapping can be done for MIL-STD 1553B and
similar protocols.[10] This simplifies porting of legacy
software code to AFDX environments and can benefit
flight-certification efforts. Any AFDX end-station port
interface can source many VLs and can also receive other
VLs, as needed by the application. Note how the many

7

physical cables needed for ARINC 429 are replaced by a
single network cable plant containing the same circuits, but
now implemented in time-division multiplexed VLs—
saving much weight, volume, and wiring complexity.

The receiver maintains data integrity by checking that each
packet arrives within the specified time interval (BAG) for a
given VL and its SN matches the next expected value.
Frames for a given VL must be transmitted and received in
order, for the SN to stay sequential and out-of-order packets
are rejected. Furthermore, the receiver checks data integrity
using cyclical redundancy check (CRC) error detection. The
implication is that packet retries and acknowledgements are
not the primary mechanism for ensuring data integrity.
Rather, very low packet loss—with data integrity and timing
determined by SN and CRC methods—is needed for time
determinism. Errors are rejected rather than corrected
because timing conformance is as important as data integrity
in real-time control systems, an inherent design tradeoff.

Other data integrity methods can be instituted at the
application layer, but the AFDX network will provide a
sequential stream of data at the defined time intervals with a
very high degree of error detection. Network errors look like
missing data for AFDX, but look like delayed data for
Ethernet. The Integrity Management (IM) parameter
determines whether the receiver uses the SN or ignores SN
errors. One might notice that data integrity and temporal
integrity are a design tradeoff in data communications; one
can improve data integrity by acknowledgement or
redundancy, but at the expense of complicating the timing
(and vice versa).

The protocol (PROT) layer is very important in maintaining
data integrity. ARINC 664 Part 7 also defines the AFDX
network protocol layers based on TCP/IP and User
Datagram Protocol (UDP). Ethernet simply forms and
transmits packets, but leaves the data accounting, and
therefore data integrity to the PROT layer, usually
implemented as TCP/IP for most networks to be compatible
with the Internet.

TCP/IP requires acknowledgement packets to be sent by the
receiving station for packets successfully received. TCP/IP
also tracks packet sequence and retransmits packets lost in
the network, allowing out-of-order transmission and receipt
of packets as necessary. All of this acknowledgement and
retransmission takes time and bandwidth, resulting in
temporal non-determinism for Ethernet and TCP/IP
networks. The TCP/IP protocol also arranges packets in the
correct order prior to passing them to the application layer.
Therefore, a missing packet can interject a significant delay,
since all data is delayed until successful receipt of a
retransmitted packet. On a heavily loaded network, packet
loss can be significant and packet delay and retransmission
can produce significant and highly variable latency.
Furthermore, the use of TCP/IP “windows” where a single
acknowledgement suffices to cover a number of transmitted

packets (usually contained in a specified buffer size) can
also disrupt temporal behavior.

AFDX solves the potential problems by using UDP, which
is similar to broadcasting packets. Although ARINC 664
Part 7 specifies either TCP/IP or UDP, in practice only UDP
is used. UDP requires no protocol acknowledgement and
therefore limits network load by eliminating
acknowledgement packets, meshing nicely with SN and
BAG concepts. AFDX thus relies on the MAC frame
delivery mechanism, using BAG to limit network bandwidth
and SN to track data integrity.

Packet loss can be a significant performance issue for
AFDX. The Study Team investigated mechanisms for
packet loss, since this would be a major problem for critical
applications. By its nature, Ethernet 802.3 is asynchronous,
with each end station able to transmit at any time. There is
no global time synchronization mechanism. Ethernet 802.3
relies on the switch to prevent significant packet loss.
However, Ethernet 802.3 allows packet loss. Any given
switch has limited buffering capability, and in the event of
overload will drop packets. The use of TCP/IP prevents
packet loss from becoming data loss by retransmitting the
lost packets. UDP, by contrast, simply allows dropped
packets to become data loss and never retransmits missing
packets. AFDX using UDP has a similar policy; missing
packets translate to missing data and therefore missing
sensor values or missing control parameters when applied to
a flight-critical avionics system.

The primary mechanism for packet loss is collisions. In an
Ethernet 802.3 network, this loss is in the switch. Since each
end station-to-switch connection is full-duplex, packets
cannot be lost on that network segment. For most avionics
use, network utilization is so far below capacity that
overload in end station-to-switch segments is unlikely.
Recall that AFDX purposely limits network utilization by
staggering all packets by BAG. However, an end station
with many VLs can experience a coincidence of all VLs,
therefore resulting in many frames being transmitted or
received concurrently. For example, in Figure 3 above, VL
10 will interfere with VL 20 every other frame and with VL
30 every fourth frame. If all these VLs originate from the
same end station, the end station scheduler can stagger the
frame transmission and avoid contention.

8

While the timing for a single VL can be maintained easily,
when many end stations are used to form a real AFDX
network the AFDX switch is responsible for solving
contention caused by collisions. In this case, the collisions
are between simultaneous packets issued from multiple,
asynchronous end stations. The network switch will buffer
the simultaneous packets and send them to the destinations
after a brief queuing delay, thus introducing time jitter into
the AFDX network. The maximum timing jitter is defined
and enforced for each BAG rate for every VL in the
network, to maintain maximum bounded latency for all
network traffic. The maximum jitter is equal to half the
minimum BAG, or at most 0.5 msec. If the switch or end
station cannot handle many concurrent VLs due to buffer
limitations, there will be packet loss.

The AFDX Switch is a critical component of an AFDX
network, providing the MAC-layer routing function from
one end station to another. It is also responsible for AFDX
policy enforcement for addressing and timing. Most
Ethernet switches are learning types that determine a
destination MAC address—of the end station connected to
each switch port—using the Logical Link Control
Discovery Protocol. Once the first Ethernet packet is
successfully sent through the switch port, that MAC
addresses is stored in the switch address buffer. This process
implies that the first time a packet is routed through the
switch, the discovery process and switch learning time will
delay that packet for an indeterminate interval. This cannot
be tolerated in a time deterministic network, so the AFDX
switch contains a static address-switching table configured
during initialization and remaining constant during
operation. This means that the network cannot be physically
reconfigured during operation, unlike Ethernet. However,
reconfiguration can be easily achieved by updating the
switch table explicitly.

The AFDX switch validates addresses and routes data to the
correct switch port using the static configuration table. It
also enforces BAG timing by monitoring the bandwidth
utilization and packet timing of a specific VL. If a specific
VL is malfunctioning by jabbering and jamming the
network, the switch will block those faulty packets from
going any further. The AFDX switch is therefore a key
element in containing fault propagation in an AFDX
network, by detecting and isolating babbling end stations.
Of course, there would be a total loss of the VLs involved in
such policy violations. Therefore, data integrity is
maintained at the PHY layer using cyclical redundancy
check (CRC) for each frame (providing excellent error
detection) and Sequence Numbers (SN) for VLs to track
data packets.

AFDX also defines the use of dual-redundant networks.
Redundancy management is performed on a VL basis, using
the Redundancy Management (RM) parameter. If set, both
AFDX ports transmit the same packet at the same time and

both networks provide the same packets to two independent
receiver ports. The algorithm for accepting data is to accept
the first received packet. In the case of unequal transit times
through the switch, the first packet wins—which favors
better time determinism by reducing jitter. By specifying
redundancy on a per VL basis, other non-time-critical data
could be transmitted on either port, useful for single
avionics modules that are only in close proximity to one
network’s physical route through the vehicle.

4. MISSION COMPUTER DESIGN

The “Mission Computer” is a concept for an on-board
general-purpose computer for spacecraft mission support
functions. The use of an ARINC 653-compliant real-time
operating system (RTOS) would be ideal for the Mission
Computer (MC), allowing multiple applications to have
access to all flight vehicle data and state information. This
data exchange would be one way: the Mission Computer
can read the vehicle parameter information but cannot alter
it. The high-priority partition would be used to run the real
time tasks—such as reading the AFDX network, buffering,
and writing the entire data stream to the Flight Data
Recorder (FDR) and for performing telemetry and
communication-link protocol formatting.

The central concept is to separate the flight-critical
functions from mission-critical functions by running them
on different platforms. The MC would be able to host
application programs needed for certain specific phases of
flight. The use of ARINC 653 would allow transient
applications, to be loaded only when needed. Allowing
dynamic use of programs enables very effective use of the
Mission Computer functional capability. Of course, each of
these “dynamic” programs would be fully certified as
appropriate for its function prior to running it aboard
spacecraft. The use of ARINC 653 allows each program to
be validated and verified independently since the RTOS
provides adequate partitioning. The AFDX network ensures
that data communications can be conducted in a time-
deterministic manner. Compliance with the ARINC 653
guidelines on functional separation and AFDX network
usage further supports robust partitioning.

A reference software architecture for the Mission Computer
can be based on ARINC 653, taking advantage of fault
containment provided by the partitions. The tau 0, time-
priority partition runs the main data-handling function,
which receives flight-data parameters, processes them, and
stores them in the FDR, built as a large array of flash
memory. In addition, it selects parameters for downlink,
manages the multiple parallel communication resources, and
provides the main interface to space-based network
communications. It can host ancillary data acquisition
functions, storing these parameters in the FDR and even
down linking them upon request. It could act as a command
arbitration interface, determining which specific
communication link had priority—important for supporting

9

concurrent legacy, network-compliant and proximity
communication links. It could host machine-vision
applications for automated rendezvous and docking and
even Vehicle System Management (VSM) functions,
exclusive of critical failover.

A classic example of advanced VSM function would be the
reconfiguration of a critical system after a failover. The
automatic failover may be suboptimal, therefore, a
subsequent reconfiguration could optimize against
subsequent additional failures. It could also optimize
resource use such as power, acting as an on-board overall
power manager. Such functions could be performed on the
ground, as in current practice, or could be migrated to the
MC later to provide more autonomy for future missions.
The flight critical computer (FCC) would reject any
inappropriate input from the Mission Computer, providing
the final safety check (as appropriate for flight control
functions).

ARINC 653 defines queuing and sampling ports in the
APEX API, and AFDX extends this concept to time-
deterministic network operation. Queuing ports are very

similar to TCP/IP streaming sockets, except that AFDX
allows definition of a fixed queuing first-in-first-out (FIFO)
buffer size, preventing most buffer overruns and
underflows. Generally, the queuing FIFO size is specified as
the number (not bytes) of AFDX packets in the FIFO, also
leading to more control over the potential length of time
delays caused by the FIFO buffer backing up. Proper setting
of internal RTOS and AFDX parameters can ensure that the
queuing FIFO buffers will not experience problems.

The ARINC 653 sampling ports have no buffer at all, but do
indicate parameter freshness through the use of a timestamp.
In this case, a read or write of a sampling port is the
equivalent of reading a sensor connected directly to the
computer: each read will read the last sensor value
communicated on the network. Multiple reads will read the
same parameter, but can use the freshness parameter to
identify stale data. The design of AFDX, requiring
predefinition of VLs, sampling and queuing ports, and other
runtime parameters can eliminate many of the buffer-
management issues involved in Ethernet networks.

FLIGHT CRITICAL
COMPUTER 1

FLIGHT CRITICAL
COMPUTER 2

Crew I/F

FLIGHT CRITICAL
COMPUTER 3

Display-3

MISSION
COMPUTER - 2

AFDX
Switch

FDR

MISSION
COMPUTER - 1

 FDR

AFD

AFD

AFD

AFDX
Switch

S-BAND A

S-BAND B

PROX A

PROX B

S-BAND C

KU-BAND

Space
Telecoms

Display-2

Display-1

Cockpit
Displays

Ancillary
Sensor

Network

Comms
&

Track

Figure 4. Mission Computer Network

10

Ancillary Sensor Network Design

A simple AFDX network design example will help identify
the relevant issues for AFDX configuration and design. The
detailed design of the Ancillary Sensor Network (ASN)
highlights the advantages of a network approach for adding
sensors to a spacecraft for flight test or vehicle health
management. This can help meet the development flight
instrumentation need for flight tests. Many times during a
vehicle’s operational lifetime, it may be desirable to add
some new sensing capability to an existing design. For
example, the Orbiter has the “Orbiter Instrumentation Bus”
used for flight-test and ancillary data collection. Subsequent
to the loss of Columbia, a wireless wing-leading-edge
impact-detection system was installed on the Orbiter to
detect any foam impact during ascent or any micrometeorite
impacts during orbit.

We will assume that the Ancillary Sensor Network needs to
be single-fault tolerant and provides time-synchronous
delivery of sensor data to the Mission Computer. In
compliance with standard data communications practice,
one network runs down the right side of the vehicle and one
network runs down the left side of the vehicle. The goal is to
allow new “smart sensors” to be added to the ASN in a
plug-and-play fashion with minimal reconfiguration
required. Smart sensors can be new sensor modules or
“virtual sensors” which use legacy sensors with additional
processing in software providing ease of configuration,
identification and data validation. The smart-sensor modules
include network-connected interfaces to multiple sensors
adhering to IEEE 1451.1 standards for data, information,
and knowledge management across networks [11];
transducer electronic data sheets (TEDS)—IEEE 1451.2—
and health-related information as specified in Health
Electronic Data Sheets (HEDS). [12] Use of AFDX
sampling ports rather than Ethernet will allow setting up
different time-synchronous rate groups for sampling the
sensor data, with time stamping of each data point.

The use of smart sensors (virtual-using legacy sensors, or
physical-with embedded processing) provides a number of
benefits. Smart sensors provide configuration data and
information via TEDS and HEDS, which describe details
regarding sensor operational state, calibration status, serial
number and other meta data relevant to validating sensor
values in critical systems. [13] An analogous approach
could define component electronic data sheets (CEDS), to
include (virtual) smart components such as valves, tanks,

etc.; also communicating data and information on the
network bus. [14] Smart sensors can use unified data
interfaces such as AFDX, with greatly simplified
connections, emulating plug-and-play functions. This makes
adding sensors for flight test or operational health
assessment far simpler than older methods. Software can use
TEDS and HEDS templates to quickly add a new sensor to a
data acquisition loop, for example. Finally, advances in
fabrication techniques are possible using a number of
microscopic sensing elements, with the sensed value
representing an average of the valid sensing elements. This
has the potential of significantly improving calibration and
sensor operation by providing redundancy and
computational functions at the sensor module level. A bad
or inaccurate sensing element could be voted out of a valid
configuration, increasing robustness and increasing
calibration intervals. [15]

The overall ASN design is shown in Figure 6 consisting of a
dedicated pair of AFDX switches for ASN use that connect
to the main AFDX Mission Computer switches. This
example provides four smart-sensor ports for the spacecraft.
AFDX will support mixes of single and dual-redundant
network traffic.

Figure 5. ASN Software Architecture

Console

Micro Kernel
Processor Platform Interface

Partition 1
Data Transfer

Partition 2
APEX API

Partition 3
ASN
DAQ

App
Loader

ARINC
S-Ports

ARINC
Q-Ports

RTOS System Library

RTOS Scheduler, Device Drivers, Network
Stack

Partition
Mgmnt

11

In software, the ASN network manager runs in a separate
ARINC 653 partition. The applications that might use the
data are run in another partition and communicate with each
other via shared memory. The ASN manager performs the
functions of polling the ASN network, discovering and
reading the data from the various modules. Each module is
assigned a certain set of 1-msec, 8-msec, 32-msec, and 128-
msec rate groups.

The AFDX network is designed and scheduled to
accommodate a full set of potential modules. In a real
spacecraft, most of these “slots” would not be used. If that
module or data slot were missing, no packets would flow;
the manager would place nulls in the corresponding shared
memory array. The array would be completely refreshed
each major cycle.

AFDX internal sampling ports would be an alternative
method of communicating data from the ASN manager to
the sensor application programs. The manager would also
put the parameters into the telemetry stream if desired, and
also write them to the FDR. Figure 5 shows a representative
architecture for the ASN using the ARINC 653 software
standard running in the Mission Computer. The only new
software module would be the ASN data acquisition (DAQ)
module, running in a separate partition to guard against
software coding errors (or runtime errors related to the
network software) in this module from affecting functions
like FDR or telemetry.

The table below shows the number of sensor-pod modules,
data channels, VLs, and other parameters for this design
example. Our Lab Evaluation will attempt to duplicate this
ASN design for validation. We define just four sensor pods,
each containing eight channels per rate group, for a total of
32 channels per pod. This gives a total of 128 channels, 32
at each rate group. This is a small sensor system. Maximum

bandwidth and other system parameters are summarized at
the bottom. This example uses 30% of the total available
bandwidth on a 100-Mbps network. There is much capacity
left, and the design could scale up a factor of two—resulting
in an ASN that would support up to eight sensor pods, each
hosting multiple sensors at high rate and resolution.

Table 1. Ancillary Sensor Network Configuration

Each sensor pod can host many individual smart sensors or
conventional sensors, given the rather large message size
available for data transfer. Even the smallest packet size (64
bytes) associated with the 1 msec rate group would support
up to 16 sensors for each channel providing 32 bits of data
(Integer32) at each sample point. Each Pod supports 8
channels per rate group. Using this assumption, this ASN
design would support a total of 7680 sensors.

Certain sensor pods could actually be sensor networks or
webs in practice, resulting in a scalable hierarchical system.
This approach would allow a given sensor pod to be
implemented as a wireless network access point or bridge,

Sensor Pod
 1

P 1

Sensor Pod
 2

Sensor Pod
 3

ASN
Switch 1

P 2

P 1

P 2

Sensor Pod
4

ASN
Switch 2

P 1

P 2

P 1

P 2

AFDX Network

ASN
Channels

Pod ID 1 msec 8 msec 32 msec 128 msec

Pod 1 (VL#) 0-7 8-15 16-23 24-31

Pod 2 (VL#) 32-39 40-47 48-55 56-63

Pod 3 (VL#) 64-71 72-79 80-87 88-95

Pod 4 (VL#) 96-103 104-111 112-119 120-127
Data Size
(bytes) 64 128 256 512
Time/channel
(µsec) 0.84 1.48 2.76 5.32
Total Time
(µsec) 26.88 47.36 88.32 170.24

Bandwidth % 21.504 4.736 2.208 1.064

Sensor Rate Groups (BAG value)

Figure 6. Ancillary Sensor Network Diagram

12

now capable of acquiring up to 1920 sensors at any one of
the four rate groups. Such a cluster architecture has
significant advantages in terms of connection routing
efficiency, functional redundancy and fault containment.

The hardware and RTOS platform needs to be validated by
extensive testing of the hardware for environmental
tolerance, particularly to space radiation effects such as
single event upset (SEU) and total dose effects.

Any flight use of AFDX will require a full validation of the
AFDX hardware interface and the associated software. This
is best done in the context of the platform-validation effort
with the data-communication hardware and software being
major platform elements tested. Test protocols from this
paper’s Laboratory Evaluation can be used as the basis for
AFDX flight certification.

The adoption of AFDX for high-speed data handling for
telemetry, communications, display-data transfer, and flight
data-recording functions fills an important need for more
bandwidth, time determinism, and flexibility in spacecraft
data communications. The use of an AFDX Ancillary
Sensor Network (ASN) provides an opportunity for
adoption of AFDX with virtually zero risk—only the non-
critical ASN would be affected in case of technology
performance shortfalls. Concurrent adoption of smart-sensor
technology (IEEE 1451) can significantly improve the types
of sensors available and their reliability and cost. The
AFDX would provide flexible capability to add sensors for
vehicle health monitoring that would provide sufficient
bandwidth, ease of interface and component design, and
considerable simplification of software design,
implementation and V&V.

5. LAB EVALUATION

The AFDX ASN laboratory evaluation measured the
performance of commercial AFDX products to determine
conformance to the Airbus AFDX and ARINC 664
Standards using a representative ASN configuration. The
evaluation focused on time determinism and network
throughput in the packet domain. Statistical analysis was
used to quantify the capability of ADFX to provide time-
deterministic messaging during testing over a broad range of
operating configurations. The network was deliberately
overloaded and the resultant error modes observed.

A key requirement for the evaluation was the ability to
generate a rich set of test vectors containing different
network packets with various BAG time rates, packet data
sizes, and number of VLs. A second key requirement was
the ability to capture and analyze the packet traffic of a fully
loaded network at the full network speed of 100 Mbps.
Setting up the evaluation protocols to conform to current
aerospace practice has required consultation with experts on
AFDX. They have indicated that all AFDX implementations
use UDP as the chosen protocol, given that it can provide

better time determinism by not requiring acknowledgement
packets. Therefore, all testing was performed using the UDP
Protocol.

The laboratory evaluation supported multiple software tools
for generating AFDX network traffic, including the ability
to inject specific errors. The AFDX monitor and associated
software produced packet-capture datasets with hardware
time stamps accurate to better than 1 microsecond. The
traffic must stress the net to expose AFDX weaknesses and
any product implementation errors and timing jitter. Do
many high-rate (1 ms) packets cause more stress than high-
rate packets interspersed with large, low-rate data payload
packets? How does congestion overloading of the switching
hub (via multiple simultaneous AFDX traffic generators)
affect packet timing jitter? Can the overloaded switch—
which adds latency to packets subject to network
contention—produce violations of the maximum packet
jitter? What are the throughput and configuration issues
associated with larger, more representative ASN networks?

The Study Team also developed software to analyze the data
produced by the AFDX testbed. Loading the network
generated thousands of packets per second, each generating
a detailed packet-capture record. Analysis of timing jitter
required software to read this data and perform conformance
analyses. To answer questions posed in the task request, the
Study Team developed network performance metrics based
on jitter statistics (e.g., minimum, average, maximum, and
standard deviation), number of packets and total bytes per
second (representative of network throughput), type of
errors encountered under stress conditions and the
sensitivity of each rate group to timing variations. Test runs
were long enough to generate statistically meaningful data.

The packets were captured and the data set analyzed for
absolute timing, timing jitter, VL consistency, and errors.
Deviations were identified and analyzed before proceeding
to the next testbed configuration. Our data analysis tracked
SNs for each VL, independently flagging missing packets to
understand the mechanisms of packet loss in AFDX
networks. Key metrics used to characterize AFDX
performance are BAG timing variables (such as average
packet-to-packet time), their standard deviations, and the
minimum and maximum values observed for each VL under
test. Additional metrics included any packet errors observed,
the skew between two redundant channels, and the total
sustained bandwidth for each VL and for the AFDX
network as a whole.

At full load, the AFDX network produced thousands of
packets per second, producing many thousands and even
millions of packets for analysis, producing good timing
statistics. Since each run could include tens of thousands of
data capture records—each packet record having more than
40 data fields—this examination of the data had to be
automated. The analysis process required sorting the full
packet capture dataset by VL and also by channel for

13

redundant data sets. A key requirement was to identify any
missing or dropped packets.

The analysis program Panorama V was used to validate the
data sets and to perform statistical analysis of the captured
packet data to produce BAG timing, jitter timing, and
redundant-channel timing statistics. The team chose to use
Panorama, a "personal computer" database/spreadsheet
application from ProVUE Development (www.provue.com)
because of its excellent tools for exploratory data analysis.
Panorama includes a powerful scripting language for both
database manipulation and interface development. It also
offers exceptional data processing speed. Using its database
features, the captured records could be easily parsed,
augmented, sorted, selected, summarized, and displayed.
Using the scripting language, the team captured these
manipulations as screening routines for validating data.
Subtle anomalies buried in the data could thus be brought to
attention, enhancing the team's understanding of the
generating processes and preventing errors from appearing
in the statistics.

Switch Latency Data Analysis

The first task of the laboratory evaluation was to
characterize the switch. The evaluation used commercial
Ethernet switches (Catalyst 2900) from Cisco. Aerospace
AFDX product vendors recommend using such switches for
testing, since actual AFDX switches are very expensive,
only built to custom order, and may block the errors and
other phenomenon we were trying to measure.
Theoretically, the switch should present fixed time latency
for network traffic if lightly loaded, with a simple constant
timing delay for each packet. With testbed timing accuracy
better than 1 µsec, we were able to confirm that hypothesis
showing that latency scaled with packet length, validating
the test setup and accuracy of each packet monitor. It should
be mentioned that an AFDX switch is statically configured,
with each VL and BAG defined prior to use. Furthermore,
there is to be a maximum of 100 µsec of packet delay, and
buffer sizes need to be scaled to the AFDX network to
prevent packet loss.

A Cisco Catalyst 2900 was statically configured to support
the current test setup. The Cisco Catalyst 2900 allows the
user to “tie” two or more switch ports together with the

creation of virtual LANs (VLANs), isolating AFDX traffic
by statically configuring the switch to reduce collisions.
This is very similar to the predefined AFDX switch
configuration table. Collisions are prevented and packet loss
is minimized since traffic is steered only to ports active in
the test. This is important, because we wish to observe
packet loss due to AFDX end-station malfunction,
difficulties in VL scheduling, traffic overload, and other
phenomena that require the switch to work properly for
AFDX emulation.

The following tests were used to quantify Cisco 2900 switch
latency. The reference end station system was used with the
Cisco switch in one segment and a direct connection in the
other segment. In this configuration, Channel A-to-Channel
B skew represents absolute switch latency.

The Cisco switch latency scales with packet size and not
with VL or BAG values. A full packet (1518 bytes) incurs a
latency of about 132 µsec, while a 512-byte packet incurs
roughly one-third that value, or 52 µsec. At the low end, a
64-byte packet requires 16 µsec, which is not quite linear.
The Cisco switch is about 30% slower than the AFDX
switch specification allows.

The Cisco switch uses an 8 MB buffer global to all ports.
This will introduce an aggregate of 640 msec of delay for all
packets being buffered in the switch. It will also be able to
accommodate at least 4000 packets before overrun and
packet loss. The basic difference between various switches
is the total amount of latency they can introduce into a
network and also the point (in terms of stored packets) at
which they begin to drop packets. The Cisco is able to
handle a significantly larger number of packets in its buffer
than other switches, resulting in much longer delays prior to
packet loss.

The switch should learn the MAC addresses of end stations
connected to each port and then use them to switch the
Ethernet frames to the correct port. Our analysis revealed
that the switch was broadcasting to all ports, and that
simultaneous packet delivery to multiple ports (even ports
not involved in the VL data transfer) was resulting in extra
“collisions” leading to packet delay and possible loss. In this
mode, all packet traffic was affecting all active switch ports.
Proper operation would have the packet traffic switched to
only those switch ports that were active in the VL, resulting

VL BAG Pkt S ize BAG Ave BAG SD BAG M in BAG Max Skew BW Errors
m sec bytes m sec µsec m sec m sec µsec Mbps

10 128 1518 128.00 0.29 128.000 128.001 132 0.1 0
11 64 1518 64.00 0.21 64.000 64.001 132 0.2 0
12 8 512 8.00 0.11 8.000 8.001 52 0.53 0
13 1 64 1.00 0.04 1.000 1.001 16.2 0.67 0
14 1 64 1.00 0.05 1.000 1.001 16.2 0.67 0
15 1 64 1.00 0.04 1.000 1.001 16.2 0.67 0

Totals 2.84 0

Table 2. C isco Sw itch Latency Data Analysis Sum m ary

AIM -1 Port 1 & 2 transm it d irect and through C isco sw itch to AIM -2 Port 1 and 2

14

in lower traffic rates at each port. This switch works in a
broadcast mode until it is able to fill out its switch table;
then it starts buffering packets and routing them to the
correct ports based on MAC addresses. Further study
revealed that most 802.3 switches learn the MAC address of
connected end stations by capturing the MAC address of
each transmitting station. This works fine for Ethernet,
where all ports have a unique MAC address and also
transmit at some time, allowing this algorithm to reliably fill
out the switch table.

Each end station was connected to the switch using a full-
duplex cable connection, which eliminated any chance of
collisions on this network segment, but packet collisions
could still occur internal to the switch. For example, when
two end stations send a packet to the same receiving end
station at the same time, the two packets must be staggered
by delaying one until the other has been successfully
received. Ethernet 802.3 switches have sufficient buffer
capability and data transfer speed to be able to do this for at
least a half-dozen packets per port. Moreover, the switch
should use the MAC address to steer each packet to its
destination port and no others, reducing contention.

Ancillary Sensor Network Test Vectors

The following test vectors were used to incrementally build
and test an AFDX configuration to simulate the Ancillary
Sensor Network (ASN). Traffic patterns that could be
produced by sets of sensors at the prescribed rate groups
were generated, with each test vector adding more sensor
channels and loading the network more fully. Two end-
stations running traffic generation and packet capture
software were setup and were designated AIM-1 and AIM-
2. The tests were run unidirectional, from AIM-1 to AIM-2
in a dual redundant configuration using the Cisco 2900
switch. The first test vector (TV32) used 60 VLs and the
second test vector was run with 120 VLs to determine the
effects on packet timing caused by more collisions in the
switch due to increased network load.

Test Vector 32 (TV32), set up 15 VLs each at the 128-msec,
32-msec, 8-msec and 1-msec BAG values, for a total of 60
VLs. The packet sizes were 512, 256, 128 and 64 bytes
respectively. This test was run unidirectional in dual-
redundant mode. The following chart shows the data for
Test Vector 32 on a scatter plot showing average measured
packet BAG values and maximum BAG values. All values
match up, indicating conformance to the AFDX jitter

Chart 1. TV32: 60 VL ASN Test

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60

Virtual Link Number

B
A

G
 T

im
e
 I

n
te

rv
a
l
(m

se
c)

BAG Maximum

BAG Average

15

specification. For these charts, the blue triangle (measured
packet BAG average value) should overlay the yellow
diamond (measured packet BAG maximum value)
completely if the VL is conforming to the AFDX jitter
specification. If the yellow diamond is showing, this VL has
at least one packet that exceeds the 0.5 µsec jitter
specification. This allows easy recognition of which VLs
contain jitter in excess of the specification.

While the average values are still acceptable (with only a
very small increase), the standard deviations have increased
significantly and the maximum delay values push out to 450
µsec, near the jitter limit. The average of all the standard
deviations in this set is 60 µsec, as compared to under one
µsec for simple loopback configurations. Certain cycles,
where many packets are issued simultaneously, are starting
to experience switch congestion at a network load factor of
14%. The packet delay in this case is about 156 µsec, but
the corresponding switch delay is a maximum of 1890 µsec,
enough to start causing missed packets in high-rate groups,
which was not observed with TV32. Skew between packets
from Channel A and Channel B was always small and
within specifications.

Test Vector 33 (TV33) expanded the number of VLs to 120,
again by repeating the rate groups. This was done to
demonstrate the effects of network throughput on packet
timing. The chart below shows the average and maximum
BAG values for this TV 33 test run. Average BAG timing
increased by 0.3 msec for all the 128-msec VLs, with

standard deviations nearly four times those of TV32. The
standard deviations did not exceed the jitter threshold, but
the maximum BAG value exceeded the jitter threshold of
0.5 msec many times as shown in Chart 2. Certain VLs of
the high-rate BAGs are affected badly, with many 8-msec
groups taking 12 and even 13 msec at certain times. The 1-
msec BAG VLs can sometimes experience up to 4 msec of
delay. Packet-issue delay would be double that of TV32, or
312 µsec, but maximum switch delay is an astounding 3780
µsec (3.8 msec), which has to be spread out between all
active VLs, resulting in the occasional delayed packet.
Network throughput in this case was 28 percent of total
capacity.

The interpretation of these results centers upon
understanding the maximum possible collision rate and
consequent delay through the Cisco 2900 switch. Up to 640
milliseconds of delay is possible through this switch without
dropping packets. With about 240 packets being generated
sequentially by the two end stations simultaneously, delay
through the switch is almost certainly the dominant factor—
particularly since the packet-issue delay by each end station
is much less by at least an order of magnitude. This
interpretation is bolstered by the observation that BAG
averages for TV33 are all longer than nominal. All jitter
timing violations are positive, therefore caused by additional
delay.

The exact interleave of packets through the switch and the
resulting packet delay value was very dependent upon the

Chart 2. TV33: 120 VL ASN Test

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 20 40 60 80 100 120

Virtual Link Number

B
A

G
 T

im
e
 I

n
te

rv
a
l
(m

se
c)

BAG Maximum

BAG Average

16

relative phase of the network traffic from each port.
Pressing a GUI button starts packet traffic from each AIM
system; so all VLs start at the same time from that AIM unit
but start asynchronously between AIM-1 and AIM-2
systems. There may also be minor timing differences
between Channel A and Channel B, which may have an
effect on collisions. Therefore, collisions in the switch
resulting in packet delay will be different depending upon
the phase difference between transmitting end stations. The
switch must reconcile highly variable contention as phase
differences between transmitting end stations varies. The
worst case collision rate occurs when many VLs all transmit
at the same time, necessitating buffering of most packets.

Collisions in the switch—which leads directly to variable
latency for packets traversing the switch, increasing the
jitter and disturbing AFDX network timing is the primary
design issue for AFDX networks. If all end stations generate
packets like clockwork, the only real source of jitter is in the
switch. It is the central component that absorbs the timing
uncertainties by correctly distributing the variable latencies
between the packets in order to prevent BAG timing
violations on all VLs. It is clear that switch delay (in cases
where many packets are issued simultaneously, and buffered
in the switch) is the main reason this test configuration—
representative of a full-up ASN—has timing problems. A
faster switch would help mitigate this timing problem. The
Cisco switches are slower than the AFDX specification,
which is 100 µsec maximum per packet. The Cisco switches
exceed this by about 30%. This example fully demonstrates
the importance of switch design, even in an AFDX network
loaded to only 28 percent. This ASN would comply with the
AFDX specification and ARINC 664 P7 if the delay
through the switch were less. An AFDX-compliant switch
actually regulates total packet delay to prevent such issues.
Therefore, an ASN design similar to this would be feasible
with the proper AFDX switch.

6. CONCLUSIONS

The Aerospace Industry has developed a series of new
standards and components that would be suitable for high-
bandwidth data acquisition and information processing.
There are significant advantages to adopting ARINC 653
and AFDX communication standards for use aboard
spacecraft. Our ASN design study has revealed some
important lessons regarding IMA design:

• AFDX technology is mature enough to apply to specific
data-handling functions aboard spacecraft, particularly
to telemetry, data display, and flight data recording.
Component certification is needed.

• Integrated Modular Avionics (IMA) architecture is a
strong approach for improving software design, with
functional partitioning resulting in improved validation
and verification. It requires high-function LRUs and
enhanced data communications, but delivers better fault

isolation and configuration management. It is
potentially sensitive to timing variations due to partition
swapping.

• The ARINC 653 “Avionics Application Software
Standard Interface” application program interface (API)
and partitioned operating system is being adopted for
flight control and should simplify software design and
validation and verification.

• AFDX is well suited for IMA, providing good
integration with ARINC 653 Queuing and Sampling
Ports and the use of XML system-configuration
methods.

• AFDX and similar network standards can dramatically
reduce the number, weight, and volume of cable
interconnects required for a spacecraft.

• AFDX can provide much higher data throughput than
most aircraft control data buses. It can provide reliable
time determinism and fault tolerance suitable for
mission-critical applications.

• AFDX network functionality of the Ancillary Sensor
Network was well established in laboratory evaluation,
providing significant risk reduction for adoption of
AFDX for Flight Test Instrumentation.

• Laboratory evaluation of ASN AFDX configurations
showed that they could scale well to about 30% of full
100 Mbps transmit rate before high standard deviation
of BAG timing and violations of the AFDX jitter
specification became apparent.

• The major factor for AFDX timing violations and
packet loss was overload of network switch buffers
caused by too many packets arriving simultaneously.
Staggering the packets from each end station can
mitigate this loss.

• The AFDX network switch is a critical component and
characterization of switch function and latency and the
effect of collisions and packet loss on AFDX networks
was determined.

• A real AFDX network prevents timing variations and
packet losses by defining network VL timing
characteristics and packet length during the design
phase. Careful selection of switch buffer size can then
eliminate most loss and delay exceeding the jitter
specification.

17

REFERENCES

[1] ILC Data Device Corp., “Mil-Std 1553 Designer’s
Guide,” 1995.

[2] G. Norris, M. Wagner, Boeing 777, 1996.

[3] R. Black, M. Fletcher, “Next-Generation Space
Avionics: A Highly Reliable Layered System
Implementation,” Honeywell Intl., Glendale, AZ.

[4] ARINC 653 Standard, “Avionics Application Software
Standard Interface,” 2006.

[5] Creative Electronic Systems SA, “CES White Paper on
AFDX,” 2003.

[6] IEEE 802.3 Standard, “IEEE Standard for Local and
Metropolitan Area Networks, Part 3: Carrier sense multiple
access with Collision detection (CSMA/CD) access method
and physical layer specifications,” 2005.

[7] ARINC 664 Standard, “Aircraft Data Network,” 2002.

[8] ARINC 664 Standard, “Aircraft Data Network,” 2002.

[9] Airbus France, “AFDX End System Detailed Functional
Specification,” 2003.

[10] ARINC 664 Part 7 Standard, “Aircraft Data Network
Part 7. Avionics Full Duplex Switched Ethernet ((AFDX)
Network,” Appendix B, 2005.

[11] IEEE Std 1451.1-1999, “IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators – Network
Capable Application Processor Information Model,”
Instrumentation and Measurement Society, TC-9, Institute
of Electrical and Electronic Engineers, New York, NY
10016-5997, SH94767, April 18, 2000.

[12] IEEE Std 1451.2-1997, “IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators –
Transducer to Microprocessor Communication Protocols
and Transducer Electronic Data Sheet (TEDS) formats,”
Instrumentation and Measurement Society, TC-9, Institute
of Electrical and Electronic Engineers, New York, NY
10016-5997, SH94566, September 25, 1998.

[13] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam, and
R. Polikar, "An Architecture for Intelligent Systems Based
on Smart Sensors," IEEE Transactions on Instrumentation
and Measurement, Vol. 54, No. 4, August 2005, pp. 1612-
1616.

[14] F. Figueroa and J. Schmalzel, “Rocket Testing and
Integrated System Health Management”, Condition
Monitoring and Control for Intelligent Manufacturing, pp.
373-392, Eds. L. Wang and R. Gao, Springer Series in
Advanced Manufacturing, Springer Verlag, UK, 2006

[15] F. Figueroa, R. Holland, J. Schmalzel, D. Duncavage,
A. Crocker, R. Alena, “ISHM Implementation for
Constellation Systems”, AIAA Conference 2005.

18

BIOGRAPHY

Richard L. Alena is a Computer
Engineer in the Intelligent Systems
Division at NASA Ames. Mr. Alena
was the co-lead for the Advanced
Diagnostic Systems for International
Space Station (ISS) Project,
developing model-based diagnostic

tools for space operations. He was the chief architect of a
flight experiment conducted aboard Shuttle and Mir using
laptop computers, personal digital assistants and servers in
a wireless network for the ISS. He was also the technical
lead for the Databus Analysis Tool for International Space
Station on-orbit diagnosis. He was group lead for
Intelligent Mobile Technologies, developing planetary
exploration systems for field simulations. Mr. Alena holds
an M.S. in Electrical Engineering and Computer Science
from the University of California, Berkeley. He is the
winner of the NASA Silver Snoopy Award in 2002, a NASA
Group Achievement Award in 1998 for his work on the ISS
Phase 1 Program Team and a Space Flight Awareness
Award in 1997.

John Ossenfort is an employee of
SAIC at NASA Ames Research
Center, currently working on several
projects including the Advanced
Diagnostic and Prognostic Testbed
(ADAPT) and the Systems Autonomy
for Vehicles and Habitats (SAVH)
project. In the past, he has been

responsible for administration of multiple lab networks and
participated in several field simulations, assisting in all
aspects of wired and wireless network design, deployment,
troubleshooting and maintenance. John has a dual BA
degree in Anthropology and East Asian Studies from
Washington University in St. Louis.

Kenneth I. Laws is a computer
scientist with QSS Group, Inc.,
providing support to the Intelligent
Systems Division at NASA Ames. At
USC, he developed texture energy
measures for image texture
classification. After seven years at
SRI International’s Artificial
Intelligence Center, Dr. Laws served

for two years as NSF’s Program Director for Robotics and
Machine Intelligence. He moderated the AIList Arpanet
discussion list (at SRI), then founded Computists
International and published the Computists’ Communique
for ten years.

André Goforth is a Computer
Engineer in the Intelligent Systems
Division at NASA Ames. Mr. Goforth
has twenty-five years of experience
in application of computer
technologies to NASA missions. He
has worked on a number of
intelligent systems projects ranging

from supercomputing systems to avionics and flight
software and integrated health management systems for
ground and flight systems. He worked on the development of
processing requirements for NASA Ames’ Numerical
Aerodynamic Simulator (NAS) supercomputer computing
and communication requirements; the prototyping of high
speed links for the NAS networking backbone; avionics
requirements for the support of telerobotic operations for
NASA’s Flight Telerobotic Servicer flight article;
development of the Space-Borne VLSI Multi-processor
System (SVMS) processor, a VLSI-based parallel processor
for support of artificial intelligence (AI) applications. He
led the research and development for use of parallel Ada
technologies for AI applications and was part of the Ada 9X
effort sponsored by the DoD for which he received a DoD
Certificate of Appreciation for Valuable Contributions.
Recently, he served as the project manager for the Crew
Exploration Vehicle Integrated Systems Health Management
(CEV ISHM) project at Ames and received a NASA Group
Achievement Award for his contributions in the development
of the Advanced Diagnostics and Prognostics Testbed
(ADAPT) at Ames. Mr. Goforth is a member of IEEE and
has served on program and organization committees of
IEEE Hot Chips and Compcon conferences. In addition, he
has served as NASA’s representative to the W3C and OMG
standards organizations.

Fernando Figueroa holds a B.S.
Degree in Mechanical Engineering
from the University of Hartford, CT,
and M.S. and Ph.D. degrees in
Mechanical Engineering from Penn
State University. In 1988, He joined
the faculty of Tulane University, New
Orleans; and was on the faculty of the
University of New Brunswick,

Canada, from 1995 to 1997. He joined NASA Stennis Space
Center in 2000. His areas of interest encompass
development of Integrated System Health Management
(ISHM) capability for ground and space systems, Intelligent
Systems, Intelligent Sensors, Networked Distributed
Intelligence, Robotics, Sensors and Instrumentation,
Controls. He has led multi-center, multi-entity, large-scale
projects focused on implementation of ISHM capability on
rocket engine test stands, the International Space Station
and future components of NASA’s Constellation Program.

19

